Comment on "Cellular automata model simulating traffic interactions between on-ramp and main road"

Ding-wei Huang and Wei-neng Huang
Department of Physics, Chung Yuan Christian University, Chung-li, Taiwan

(Received 30 September 2002; published 20 June 2003)

Abstract

In a recent study of traffic flow around on-ramp [R. Jiang, Q. S. Wu, and B. H. Wang, Phys. Rev. E 66, 036104 (2002)], two different types of phase diagrams are reported: four distinct regions are observed in the cases of $v_{\max }>1$, while only two regions are present in the case of $v_{\max }=1$. We point out that the characteristics of the phase diagram are totally dictated by the prescribed asymmetric rule of the on-ramp. In the congested phase (region IV), the configurations evolve as stable limit cycles, and are independent of $v_{\max }$. The saturated currents can be obtained analytically.

DOI: 10.1103/PhysRevE.67.068101
PACS number(s): $45.70 . \mathrm{Vn}, 89.40 .-\mathrm{a}, 02.60 . \mathrm{Cb}$

In a recent paper [1], the cellular automaton model is adapted to simulate the traffic interactions between the main road and the on-ramp. The main road and the on-ramp are both single lane and connect only at one lattice site C_{0}. The main road upstream of C_{0}, the on-ramp, and the main road downstream of C_{0} are denoted as roads A, B, and C, respectively. The phase diagram is specified by the injection rates a_{1} and a_{2} on roads A and B, respectively, and the removal rate on road C is 1 . In total, there are four distinct regions observed in numerical simulations. In region I, the traffic on both roads A and B are free flows; in region II, the traffic is free on $\operatorname{road} A$ and congested on $\operatorname{road} B$; in region III, the traffic is congested on road A and free on road B; in region IV, the traffic flows are congested on both roads A and B. Depending on the setting of maximum velocity $v_{\max }$, two different types of phase diagrams are distinguished. In the cases of $v_{\max }>1$, all the four regions are observed. Also region IV is recognized to have a saturated current at J_{C} $=0.6$. While in the case of $v_{\max }=1$, only regions I and II are realized; the absence of the other two regions is attributed to the fact that the maximum current achieved is not large enough ($J_{\max }<J_{C}$ or $0.5<0.6$).

The congestion on road has been recognized as a boundary-induced phase transition, and the on-ramp is the crucial boundary, even when its length is insignificant (in this case a single lattice site C_{0}). As the random noise is neglected ($p=0$), the system is deterministic. We point out that the dynamics is completely dictated by the update rule at the on-ramp. In the case of $v_{\max }=1$, every car hops forward to the next site if it is empty. Let A_{0} and B_{0} denote the sites right before C_{0} in road A and road B, respectively. When both A_{0} and B_{0} are occupied, the car on road A always gets the chance to hop forward to C_{0} and then blocks the car on road B. Such asymmetry is prescribed to assume the priority of the main road. In the next time step, the car on C_{0} hops forward, while the car on road B is still waiting on B_{0}. The car on B_{0} gets a chance to move into C_{0} only when there is no following car to occupy A_{0}, i.e., until there are two consecutive sites left unoccupied on road A, the car waiting on B_{0} will not be able to move forward. Thus, the asymmetric rule dictates that the cars on road A always block cars on $\operatorname{road} B$ and not the reverse. As the site C_{0} acts like a free
boundary to road A, the congestion will never emerge on $\operatorname{road} A$. Thus, regions III and IV cannot be realized in the case of $v_{\max }=1$. This should not be interpreted as the below-capacity consequence of road C, otherwise region II should also disappear.

In the cases of $v_{\max }>1$, the car on A_{0} may hop further to the next site of C_{0} in a single time step. Since both A_{0} and C_{0} are now left unoccupied, the car on B_{0} gets a chance to move into C_{0} in the next time step. Only in such cases, the cars on road B block the car on road A, which results in regions III and IV. When the high-density configurations are further analyzed, the asymmetric rule dictates the stable limit cycles shown in Fig. 1. In the time step denoted by $t=1, C_{0}$ is empty and both A_{0} and B_{0} are occupied. In the next time step $(t=2)$, the car on A_{0} hops to C_{0} and blocks the car on B_{0}. At $t=3$, the following car on $\operatorname{road} A$ moves to A_{0} and the car on B_{0} keeps on waiting. At $t=4$, the car on A_{0} hops to the site next to C_{0} and the car on B_{0} gets a chance to occupy C_{0}. At $t=5$, the car on C_{0} cannot hop forward, and both A_{0} and B_{0} are occupied by the following cars. Thus, completes a cycle. In the next time step, the configuration at $t=1$ is resumed. Such stable limit cycles are dictated by the update rule of on-ramp when both roads A and B are congested. The configurations on roads A and B are independent of the maximum velocity $v_{\max }$, as long as $v_{\max }>1$. The saturated currents and densities can be easily obtained as $J_{A}=0.4, J_{B}=0.2$, and $\rho_{A}=0.6, \rho_{B}=0.8$. The configurations

FIG. 1. The stable limit cycle of configurations dictated by the update rule of on-ramp. The location of each car is marked with a one-digit integer showing its velocity.
on road C depend on $v_{\max }$. With a larger $v_{\max }$, the cars on road C will accelerate to a higher speed and the headways will increase accordingly. The saturated current and density are $J_{C}=0.6$ and $\rho_{C}=0.6 / v_{\text {max }}$, respectively.

In summary, we show that the dynamics of the model is
totally dictated by the prescribed asymmetric rule of onramp. For $v_{\max }>1$, the configurations of the congested phase (region IV) evolve as stable limit cycles. The saturated currents can be obtained analytically, and are completely independent of $v_{\text {max }}$.
[1] R. Jiang, Q.S. Wu, and B.H. Wang, Phys. Rev. E 66, 036104 (2002).

